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Some basic ratio of elasticity. 

 It is known that in a static elastic Lame theory equation in vector form is [1,2,3]: 
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whereand - Lame coefficients determined by the formulas 
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forces. Operators included in the equation [1], to the right of curvilinear orthogonal coordinate systems are 

defined as follows: 
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wherei- curvilinear coordinates (i-1,3), qij- components of the metric tensor, defined by the equation:
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 ,xk-Cartesian coordinates (k = 1,3), q-squared transformation Jacobean 

coordinates and Cartesian curvilinear coordinate system. At the same time for orthogonal curvilinear 
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coordinates only the diagonal terms of the tensor matrix qijnot equal to zero. In this case q q ii
i


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,and 

the main differential quadratic form is determined by the equation: ds q dii
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  . To determine the 

stress state of the soil and setting mixed boundary conditions it is necessary to have a formula expressing the 

voltage across the movement. Using geometric equations derived Novitsky V: 
















3

1

2

22

1

j j

j

j

i

ii

i

i

ii
h

uh

hh

u










                   (2)          









ij

i j

i

i

i

i

j

i

j

jh h
h

u

h
h

u

h










 























1

2

2 2 i j ,   j = 1,3  

In addition, we use the equation of state (Hooke's law) [2] 
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Substituting (2) into (3) we obtain 
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where 
iii qh 2 . Now we pose the problem of linear elasticity theory for settlement schemes in cylindrical 

coordinates r,and z. As the use of unknown components of the displacement vector
uur , и

zu . The 

cylindrical coordinate system is associated with a Cartesian coordinate system, the following relationships: 

x=rcos;   y=rsin, z=z, ds
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Using equations (5), we obtain 
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 As an coordinatesi (i=1,3) applicable: 

1=r, 2=, 3=z                           (6)                 

 Substituting (5) and (6) (1), and the resulting expression into the formula (4) and taking into account 

the following system of Lame equations in cylindrical coordinates: 
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where the indices r, and z, outside the brackets denote partial derivatives with respect to the corresponding 

coordinates. The boundary conditions on the external surface of the tube - a condition of perfect contact with 

the ground, the inner surface is free: 

,0 ,0 ,0:
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Where the subscripts "1" and "2" respectively denote materials ambient environment and the tube. 

The boundary conditions to ensure equality of the normal components of the fluid velocity and the shell are 
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where v


- the fluid velocity of the particle; n - the surface normal atr=a,w- radial movement of the shell. 

To fully close the formulation of the problem, it is necessary to the conditions (8) and (9) to add conditions 

at infinity u  0  

at R x y z    2 2 2  ,     (10) 

filled with some conditions on radiation. 

For non-stationary problems as radiation conditions required to fulfill the principle of causality, and 

environment should be no movement outside the region bounded by the leading edge of the waves from 

oscillation sources. 

  

 

 

 

 

 

 

 

 

 

Fig. 1. Calculated scheme 

 Consider the problem of dynamic linear elasticity theory on the effects of seismic waves in the pipes, 

laid in a high mound in two lines and filled with ideal compressible fluid. In this case, we consider the case 

when the wave is incident perpendicular to the axis connecting the centers of the pipes, and to the 

longitudinal axis of the pipe. Design scheme is presented in Figure 1. Bi cylindrical coordinate system 

associated with a Cartesian coordinate system, the following relationships: 

 x=(asin)/(ch-cos),   y=(ash)/(chcos) , z=z                 (11) 
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where: a - half the distance between points=-and=. 

Then, introducing (11) to (5.6), and the resulting expression in (6) take the following form: 

ds a ch a ch d dz2 2 2 2 2 2 2 2     ( cos ) ( cos )      d        (12) 

Using equations (11), we obtain 
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Assuming that: 1=, 2=, 3=z and substituting (12) and (13) in (1) - (11), and, given that the 

task is flat, we obtain the following equation in bipolar coordinates Helmholtz: 
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Equation (14) after several transformations is reduced to the form 
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Solution of the equation (14) will be sought in the form of a series: 
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 Substituting (17) into (16) and equating the coefficients of the respective harmonics, we obtain the 

following ordinary differential equation: 
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 Now put the boundary conditions. To do this, use the condition (20), the replacement r=and =. 

Considering these relations, we seek a solution of the boundary value problem for the case fall into two 
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underground pipes P - compression waves and shear SV-wave perpendicular to the axis y. Wave potential 

wave has the form 

 ( ) .i i x iwtAe                                       (21). 

For the representation (21) as (20), write (21) through (12) in the bipolar cylindrical coordinates.  
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 Expanding the second factor of (22) in a Fourier series (integrated form), and after some 

transformations we obtain the final expression for the potential of the incident P - waves: 
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Other potential (20) analogous to (23) have the form: 
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 Dynamic VAT is expressed in terms of the potentials1and2: 
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Substituting (24) and (25) (8), we obtain the final solution of problems of the fall, respectively P and 

SV - waves on two underground pipes. The arbitrary constants An, Bn, Cnandet al. are determined from the 

system of algebraic equations with complex coefficients:  

[C]{q}={} 

whereС - determinant (12x12) - the order of the elements of which are a function of Bessel and Henkel 1st 

2nd kind of n-th order of q - column vector of unknowns,  - the vector of the right. 

 Gauss solve the system of algebraic equations with complex coefficients with the release of the main 

element. Dynamic VAT in the event of a fall - the shear waves in two underground pipes recorded in bipolar 

coordinates in the asymptotic form: 

u w u uz z i z z i z  , ( ) , ( )        
   

 As an condition of use of the boundary conditions (23) and substitute r = n. The final solution of the 

problem for cases falling SH - wave on the two tubes has the form: 
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 Uncertain factors An,Bn,Cndetermined from the boundary conditions. 

Consider the definition of dynamic stress-strain state of a cylindrical tube under the influence of harmonic 

waves. 

To solve this problem use the addition theorem. The addition theorem for cylindrical wave functions derived 

in [4,5,6]. Suppose there are two different polar coordinate system (rg,g) and (rk,k) (Figure 3), in which the 

polar axis of the same direction. pole coordinatekq in the system will be Rkq, kq, so that the equality 
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 Equation (28) makes it possible to convert the solution of the wave equation (1) from one coordinate 

system to another. Consider the calculation of the extended multi-line underground pipeline to the seismic 

action in the framework of a dynamic theory of elasticity plane problem. In this study the case of stationary 

diffraction of plane waves at a number of periodically arranged cavities, reinforced rings with ideal 

compressible fluid inside. The solution of the problem of implementing the method of potentials. The 

boundary conditions have the form (8). Do not change the form and potential of the incident. The potentials 

of the reflected waves from the pipe after applying the addition theorem, and taking into account the 

frequency of the problem, will have the form: 
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where: =kcos, - distance between pipe centers. 

Potentials of refracted waves in the pipes can be written as 
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and the velocity potential in the perfect shape of a compressible fluid 
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n n n
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( ) ( )( ) ,                      (32) 

 The unknown coefficients An-Gndetermined by formulation (29) - (32) (8). The result is an infinite 

system of linear equations, which is solved by an approximate method of reduction, provided that it is not 

the relation 

k n  ( cos )1 2     

  General characteristics of the program is designed for multi-line pipes in the case of the 

mound to the fall of seismic waves perpendicular to the axis passing through the center of the pipe. 

  

 

 

 

 

 

 

 

 

 

 

Fig. 2. Driving to the addition theorem. 

The input information includes the minimum required data: elastic characteristics (Еand) soil embankments 

and pipes; the density of the soil, pipe and fluid fills it; the inner and outer radii of the pipes; the 

predominant period of ground oscillations of the particles; coordinates of the point in which the VAT; 

seismicity rate. With the help of special tags can count tubes filled with ideal compressible liquid and empty. 

Calculation of cylindrical Bessel and Hankel functions performed by the known formulas. Solving systems 

of linear equations Gauss carried out by a member of the main allocation. 

Influence of the distance between the pipes. Table 1 shows the values of the coefficient 

     max max( / ( ) rr A2 2  

maximum radial pressure on the soil pipe at varying distances d between them in the event of a fall F - wave. 

It was assumed the wave number of P - waves r=1,0: the inner and outer radius of the pipe R0=0,8 m and 

R=1,0 m: prevailing between the soil particles oscillations T = 0.2 sec. Features mound of soil: permanent 
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Lame1=8,9-MPа; 1=4,34MPа; density1=1,74Кнsек
2
/m

4
. The characteristics of the pipe 

material2=8690MPа; 2=12930MPа; 2=2,55Кнsек
2
/m

4
. 

 

 

 

 

 

 

 

)( tkxiАе    

Figure 3. Estimated scheme. 

 Table 1.The value of dynamic concentration factor for different distances between the pipes for 

the case of the fall of P - waves 

D/d  0,5  1,0  2,0  4,0 

max  1,68  1,76  1,61  1,60 

 

It follows from Table 1 that with increasing first distance between tubes 0,5d/D1,0 

coefficientmaxslightly increased by 5%, with a further increase d/D>1,0 decreases more sharply by 10%. At 

d/D>2,0 valuemaxstabilized, i.e. virtually unchanged, with l4,0 close to the valuemaxfor single pipe 

according to the calculations. Consequently, the mutual influence of concrete pipes multiline stacking occurs 

when the distance between them d4,0D and increases the maximum dynamic soil pressure on them 

compared with a single tube. This magnification effectmaxassociated with the combination of waves 

reflected more surfaces of a multi-tube. This non-monotonic increase coefficientmaxwith decreasing 

distance between the pipes d / D is connected in our opinion to the phenomenon of interference imposed 

upon reflection waves. This phenomenon is extremely important for the practice of seismic design of 

underground pipelines multiline, because It allows you to choose the optimal distance between the tubes, in 

which the dynamic pressure under seismic impact is minimal. For example, Table 1 in this distance is d = 

0,5D. It is known, be noted for comparison that in the case of the static effects the opposite is true: the 

ground pressure of a multi-tube smaller than a single. In addition to the above, in the analysis of the distance 

between the pipes influencing their VAT must consider the relation (28) (so-called "slip point") at which 

there is a significant increase in the dynamic stresses in the vicinity of the tube - resonance. This 

phenomenon is known under the name of Wood's optical anomaly is a feature of a multi-line and can not 

arise in the pipeline, stacked in a single thread. In terms of design practice, it is necessary to know how far 

you can lay the pipe to the dangerous phenomenon of resonance does not occur. The answer to this question 

is given by equation (27). Let us analyze this relationship in the case of the impact of P - and SV - seismic 

waves on the underground pipeline. Table 2 shows the dependence of the maximum distance between the 

centers of the light pipe dmax, wherein no resonance occurs, the angle of incidence of the seismic waves  . 
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table 2. The dependence of the distance Dmaxthe angle of incidence. 

. Град  0 30 45 60 70 80  90 

          

Dmax,M  5,0 5,36 5,86 6,66 7,45 8,52  10,0 

  

From Table 2, the smaller the angle of incidence of the seismic wave on the pipe, the closer to each other is 

necessary to lay the pipe. Thus, the appearance of a multi-resonance tubes can be avoided by selecting an 

appropriate distance between them and thereby provide earthquake resistance conduit. Influence of the type 

of the seismic action (P, SV-or SH-wave). Table 3 shows the valuesmaxsoil maximum radial pressure on the 

pipe when P- and downs SV - seismic waves at varying distances d between the pipes. It we assumedr=2. 

Analysis of the data table. 3 shows that when d/D<4,0 coefficient valuesmaxfor P-wave and SV-like are in 

antiphase, i.e. in l / D = 1,0 seismic action maximum P-wave is 27% higher than that of SV - wave when d / 

D = 2,0% below 7, and with d / D = 4,0 up again, but only 1% .If this distance increases with the difference 

between the tubes in these effects is reduced and d / D = 4,0 disappears almost altogether. In addition, we 

note that when exposed to SV - wave valuesmaxat various distances between the tubes is 2.5 times the 

variation (25%) than when exposed F - wave (10%). Thus, the phenomenon of "local resonance" appears 

more strongly to the seismic action as SV- wave. 

Table 3. The value of the coefficientmaxunder seismic actions as F - and SV - waves at various 

distances d between the tubes 

d/D max 

  

 P – волна  SV - wave 

    

1,0 1,76  1,29 

    

2,0 1,61  1,72 

    

4,0 1,60  1,51 

 

Influence of liquid filling tube.Table 4 shows the values of the coefficientmaxin the case of the fall 

of P - waves on empty and water-filled tube at different distances d between the pipes. Liquid density was 

assumed to be3=0,102Кнsек
2
/m

4
. 
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Table 4. The value of the coefficientmaxin the case of the fall of P - waves on empty and water-filled 

tube 

d/D max 

 P - wave SV - wave 

   

1,0 1,76 1,89 

   

2,0 1,61 1,78 

   

4,0 1,60 1,90 

  

It follows from the Table 4 that the presence of water in the pipes increases seismic influence on them 

compared to empty tubes. Obviously, this is associated with increased weight of the pipeline. The maximum 

dynamic pressure on the soil pipe is enhanced. For example, when d / D = 1,0 coefficient difference values d 

/ D = 2,0-10%, with d / D = 4,0-19%. 

In addition, we note that the coefficient of variation valuesmaxat various distances d tubes filled with less 

water (7%) than in the empty pipes (10%). 

 Effect of the incident seismic wave length.Table 4 shows the values of the coefficientmaxdifferent 

lengths l0/l0-2/, р - wave incident on the empty pipe, located at a distance l = 1,0D from each other. 

Table 5.The values of the coefficientmaxfor different lengths l0P - waves. 

l0/D 3,0  5,0  10,0 

max 1,76  1,52  1,20 

  

From Table. 5 that the greater the length of the incident seismic wave; denser than the soil mound, the lower 

the ratiomax. For the record, we note that the ratio l0/D=5,0 – not bulk sand, sandy loam and loamy soils; 

l0/D=10,0 - clayey soils. Thus, the type of soil, and in particular its density has a significant impact on its 

dynamic pressure in the pipe when the seismic action. It follows that in the construction of the embankment 

above the pipe must be carefully compacted backfill. Interestingly, good compaction and reduces the static 

pressure on the pipe. Moreover, calculations show that for l0>10,0D dynamic problem reduces to the quasi-

static, which greatly simplifies the solution. Hence an important conclusion that the quasi-static approach 

can not be applied to the calculation of seismic impact on culverts. 

 Effect of the pipe wall thickness.Table 6 shows the values of the coefficientmaxtolschinyt for 

various wall concrete pipe in the event of a fall of P - waves on empty multiline pipes stacked multi-line 

pipe, laid on the distance d=0,5. 
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Table 6. The value of the coefficientmaxfor different pipe wall thickness t 

d/D  0,08 0,1  0,15  0,2 

        

max  1,60 1,66  1,66  1,68 

  

It follows from the Table 6 that the range of the wall thickness, virtually no effect on the dynamic pressure 

does not soil the pipes. This is apparently due to the fact that the harmonic wave does not pass into the 

concrete pipe sufficient stiffness to force the tube. 

Conclusions. 

1. When the seismic action the mutual influence of concrete pipes of a multi-stacking occurs when the 

distance between them d>4,0D and increases the maximum dynamic pressure of soil on them compared with 

a single pipe (local resonance phenomenon) by 5-10%. 

2. The emergence of multi-resonance pipes can be avoided if you choose the distance between the non-

multiple lengths of the incident seismic wave. This resonance phenomenon is a characteristic of a multi-line 

and cannot occur in a pipe string stacked one. 

3.local resonance phenomenon manifests itself more strongly to the seismic action in the form of SV - waves 

than P - waves. 

4. The presence of water in the pipes increases seismic influence on them by 10-20%. 

5. The denser the soil mound, the lower the seismic impact on the underground pipes. at l>10D dynamic 

problem reduces to the quasi-static. 

6. Change the wall thickness and concrete class has virtually no effect on the dynamic pressure of the 

ground with reinforced concrete pipe under the seismic action. 

similar dependence is also built when=0. It is interesting to note that in this problem, increase the stress 

concentration due to the proximity of other field gap, much more when the wave is incident from the side 

(i.e.=0), than wave falls from above (i.e.=/2). 

7. The maximum dynamic soil pressuremaxpipes, arranged in two lines at a distance d<3,0D from each 

other by more than a single tube. This excess is 15%. 

8. The liquid in the tubes, usually increases the pressuremaxfor a single tube by 20%, and for two of thread 

Pipe 5-10%. The exception is tightly packed tube d = 0, for which the pressuremaxdecreases by 4%. 
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